CO2 estimation and calculation of carbon emissions in construction projects
22 February 2024
Multimodularity of construction ERP
22 February 2024

Construction ERP using calculations and estimates as an example

ERP integrates various attribute (information) layers and data streams into a cohesive whole, allowing project managers to manage resources, finances, and logistics in a synchronized manner. Construction ERP acts as the nerve center for construction projects, simplifying complex processes and providing transparency and control throughout all phases of construction.

Construction ERP (Enterprise Resource Planning) systems are comprehensive software solutions designed to manage and optimize various aspects of the construction process. At the core of construction ERP systems are modules for managing costing and creating work schedules, making them an invaluable tool for effective project planning and construction management.

ERP system modules allow users to enter, process and analyze data in a structured manner related to material costs, labor costs, equipment usage, logistics and other costs. Based on this information, specialists in ERP systems can automatically create detailed estimates and work schedules, providing accurate and up-to-date data for decision-making.

At the heart of the ERP system is the BlackBox/WhiteBox process automation module, which is the nerve center responsible for creating and maintaining process logic - from calculations to planning, logistics and other calculations. The BlackBox/WhiteBox module is an automation process in an ERP system responsible for processing and managing business logic that can be completely hidden (Black Box) or completely open (White Box) to the system users. This allows professionals using the ERP system to flexibly manage various aspects of the business that have already been pre-configured by other users.

  • "Black Box" describes an automation system whose processes are hidden from the user, i.e. users do not see the inner workings of the system and interact only with its interface. They enter data and receive results without knowing what operations have been performed internally (e.g. which attributes have been multiplied or summed).

 

  • "White Box", on the contrary, refers to automation systems that are transparent to the user and allow to understand and, if necessary, change the logic of work. This may include customization or modification of business processes, algorithms, calculations, etc.

For example, this logic describes which attributes of entities with which other attribute (or just a number) are multiplied or summed and into which new attribute the resulting value is written. The administrator or power user customizes the process (just as we did above with ChatGPT), and the other user only has to load the data correctly click on the buttons or displays, additionally manually entering some general coefficients or ratios.

In the previous chapters we have explored the most important calculation and computation modules represented by ChatGPT queries. In an ERP system, such queries are encapsulated in a user interface that can be accessed by user clicks.

In the following example (Figure 3.4-1) in the BlackBox/WhiteBox ERP system, the administrator has described the rules for matching entity attributes from estimates so that the user, when adding a quantity or volume attribute in this module, will automatically get ready estimates and ready work schedules. All the same processes of calculations and creation of automatic estimates, which we discussed in the previous chapters, are translated into a semi-automatic Pipeline with the help of the ERP system.

Connecting this automated process to volumetric attributes from CAD (BIM) models turns the data flow into a synchronized mechanism capable of autonomously and instantly updating the value of individual groups of elements or the entire project in response to any changes in the project during the design phase.

To create such an automated data flow (Figure 3.4-2) between CAD (BIM) and ERP systems, it is necessary to define the main processes and their requirements in a structured way. This process is divided into the following steps:

  • Create rules for validation (1) that play a critical role in assuring the accuracy of the data going into the heart of the ERP system. Validation rules serve as filters that validate entities and their attributes. We talked more about the topic of data validation and verification in the chapter "Creating Requirements and Validating Data Quality".
  • The verification process (2) then takes place, which confirms that all project entity-elements with their attributes and values have been correctly created and are ready for the next processing steps.
  • If there are problems with incomplete attribute data, a report (3) is generated and the project, along with instructions for correction, is sent for revision until it is ready for the next iteration.
  • Once the project data has been validated and verified, it is used (4) to create Quantity Take-Off (QTO) tables that create attributes for group quantities and quantities of materials and resources.
  • The grouped data, by mapping or QTO rules, are automatically integrated with cost and time calculations (5).
  • In the last step, the ERP system, by multiplying the scope attributes from QTO with the attributes of the estimated items in BlackBox/WhiteBox, automatically generates cost and duration estimates for each element group and for the entire project (6).

In the previous chapters, we have already studied each of these processes separately. In an ERP system, these processes are integrated using software that includes a user interface. Behind this interface is the backend part, where structured tables process the data by performing various operations. As a result, the user receives ready-made documents that meet their requests and needs.

Similarly, the processes in ERP systems, from inception to final calculation (1-6 Figure 3.4-3), are a chain of interrelated steps that ultimately provide transparency, efficiency and accuracy in the planning and management of construction projects.

Leave a Reply

Change language

Post's Highlights

    Stay updated: news and insights



    We’re Here to Help

    Fresh solutions are released through our social channels

    UNLOCK THE POWER OF DATA
     IN CONSTRUCTION

    Dive into the world of data-driven construction with this accessible guide, perfect for professionals and novices alike.
    From the basics of data management to cutting-edge trends in digital transformation, this book
    will be your comprehensive guide to using data in the construction industry.

    Related posts 

    Focus Areas

    navigate
    • ALL THE CHAPTERS IN THIS PART
    • A PRACTICAL GUIDE TO IMPLEMENTING A DATA-DRIVEN APPROACH (8)
    • CLASSIFICATION AND INTEGRATION: A COMMON LANGUAGE FOR CONSTRUCTION DATA (8)
    • DATA FLOW WITHOUT MANUAL EFFORT: WHY ETL (8)
    • DATA INFRASTRUCTURE: FROM STORAGE FORMATS TO DIGITAL REPOSITORIES (8)
    • DATA UNIFICATION AND STRUCTURING (7)
    • SYSTEMATIZATION OF REQUIREMENTS AND VALIDATION OF INFORMATION (7)
    • COST CALCULATIONS AND ESTIMATES FOR CONSTRUCTION PROJECTS (6)
    • EMERGENCE OF BIM-CONCEPTS IN THE CONSTRUCTION INDUSTRY (6)
    • MACHINE LEARNING AND PREDICTIONS (6)
    • BIG DATA AND ITS ANALYSIS (5)
    • DATA ANALYTICS AND DATA-DRIVEN DECISION-MAKING (5)
    • DATA CONVERSION INTO A STRUCTURED FORM (5)
    • DESIGN PARAMETERIZATION AND USE OF LLM FOR CAD OPERATION (5)
    • GEOMETRY IN CONSTRUCTION: FROM LINES TO CUBIC METERS (5)
    • LLM AND THEIR ROLE IN DATA PROCESSING AND BUSINESS PROCESSES (5)
    • ORCHESTRATION OF ETL AND WORKFLOWS: PRACTICAL SOLUTIONS (5)
    • SURVIVAL STRATEGIES: BUILDING COMPETITIVE ADVANTAGE (5)
    • 4D-6D and Calculation of Carbon Dioxide Emissions (4)
    • CONSTRUCTION ERP AND PMIS SYSTEMS (4)
    • COST AND SCHEDULE FORECASTING USING MACHINE LEARNING (4)
    • DATA WAREHOUSE MANAGEMENT AND CHAOS PREVENTION (4)
    • EVOLUTION OF DATA USE IN THE CONSTRUCTION INDUSTRY (4)
    • IDE WITH LLM SUPPORT AND FUTURE PROGRAMMING CHANGES (4)
    • QUANTITY TAKE-OFF AND AUTOMATIC CREATION OF ESTIMATES AND SCHEDULES (4)
    • THE DIGITAL REVOLUTION AND THE EXPLOSION OF DATA (4)
    • Uncategorized (4)
    • CLOSED PROJECT FORMATS AND INTEROPERABILITY ISSUES (3)
    • MANAGEMENT SYSTEMS IN CONSTRUCTION (3)
    • AUTOMATIC ETL CONVEYOR (PIPELINE) (2)

    Search

    Search

    057 Speed of decision making depends on data quality

    Today’s design data architecture is undergoing fundamental changes. The industry is moving away from bulky, isolated models and closed formats towards more flexible, machine-readable structures focused on analytics, integration and process automation. However, the transition...

    060 A common language of construction the role of classifiers in digital transformation

    In the context of digitalization and automation of inspection and processing processes, a special role is played by classification systems elements – a kind of “digital dictionaries” that ensure uniformity in the description and parameterization...

    061 Masterformat, OmniClass, Uniclass and CoClass the evolution of classification systems

    Historically, construction element and work classifiers have evolved in three generations, each reflecting the level of available technology and the current needs of the industry in a particular time period (Fig. 4.2-8): First generation (early...

    Don't miss the new solutions

     

     

    Linux

    macOS

    Looking for the Linux or MAC version? Send us a quick message using the button below, and we’ll guide you through the process!


    📥 Download OnePager

    Welcome to DataDrivenConstruction—where data meets innovation in the construction industry. Our One-Pager offers a concise overview of how our data-driven solutions can transform your projects, enhance efficiency, and drive sustainable growth. 

    🚀 Welcome to the future of data in construction!

    You're taking your first step into the world of open data, working with normalized, structured data—the foundation of data analytics and modern automation tools.

    By downloading, you agree to the DataDrivenConstruction terms of use 

    Stay ahead with the latest updates on converters, tools, AI, LLM
    and data analytics in construction — Subscribe now!

    🚀 Welcome to the future of data in construction!

    You're taking your first step into the world of open data, working with normalized, structured data—the foundation of data analytics and modern automation tools.

    By downloading, you agree to the DataDrivenConstruction terms of use 

    Stay ahead with the latest updates on converters, tools, AI, LLM
    and data analytics in construction — Subscribe now!

    🚀 Welcome to the future of data in construction!

    You're taking your first step into the world of open data, working with normalized, structured data—the foundation of data analytics and modern automation tools.

    By downloading, you agree to the DataDrivenConstruction terms of use 

    Stay ahead with the latest updates on converters, tools, AI, LLM
    and data analytics in construction — Subscribe now!

    🚀 Welcome to the future of data in construction!

    You're taking your first step into the world of open data, working with normalized, structured data—the foundation of data analytics and modern automation tools.

    By downloading, you agree to the DataDrivenConstruction terms of use 

    Stay ahead with the latest updates on converters, tools, AI, LLM
    and data analytics in construction — Subscribe now!

    🚀 Welcome to the future of data in construction!

    You're taking your first step into the world of open data, working with normalized, structured data—the foundation of data analytics and modern automation tools.

    By downloading, you agree to the DDC terms of use 

    🚀 Welcome to the future of data in construction!

    You're taking your first step into the world of open data, working with normalized, structured data—the foundation of data analytics and modern automation tools.

    By downloading, you agree to the DataDrivenConstruction terms of use 

    Stay ahead with the latest updates on converters, tools, AI, LLM
    and data analytics in construction — Subscribe now!

    DataDrivenConstruction offers workshops tested and practiced on global leaders in the construction industry to help your team navigate and leverage the power of data and artificial intelligence in your company's decision making.

    Reserve your spot now to rethink your
    approach to decision making!

    Please enable JavaScript in your browser to complete this form.

     

    🚀 Welcome to the future of data in construction!

    By downloading, you agree to the DataDrivenConstruction terms of use 

    Stay ahead with the latest updates on converters, tools, AI, LLM
    and data analytics in construction — Subscribe now!

    Have a question or need more information? Reach out to us directly!
    Schedule a time to discuss your needs with our team.
    Tailored sessions to help your team grow — let's plan together!
    Have you attended one of our workshops, read our book, or used our solutions? Share your thoughts with us!
    Please enable JavaScript in your browser to complete this form.
    Name
    Data Maturity Diagnostics

    🧰 Data-Driven Readiness Check

    This short assessment will help you identify your company's data management pain points and offer solutions to improve project efficiency. It takes only 1–2 minutes to complete and you will receive personalized recommendations tailored to your needs.

    🚀 Goals and Pain Points

    What are your biggest obstacles today — and your goals for the next 6 months? We’ll use your answers to build a personalized roadmap.

    Build your automation pipeline

     Understand and organize your data

    Automate your key process

    Define a digital strategy

    Move from CAD (BIM) to databases and analytics

    Combine BIM, ERP and Excel

    Convince leadership to invest in data

    📘  What to Read in Data-Driven Construction Guidebook

    Chapters 1.2, 4.1–4.3 – Technologies, Data Conversion, Structuring, Modeling:

    • Centralized vs fragmented data

    • Principles of data structure

    • Roles of Excel, DWH, and databases

    Chapters 5.2, 7.2 – QTO Automation, ETL with Python:

    • Data filtering and grouping

    • Automating QTO and quantity takeoff

    • Python scripts and ETL logic

    Chapter 10.2 – Roadmap for Digital Transformation:

    • Strategic stages of digital change

    • Organizational setup

    • Prioritization and execution paths

    Chapters 4.1, 8.1–8.2 – From CAD (BIM) to Storage & Analytics:

    • Translating Revit/IFC to structured tables

    • BIM as a database

    • Building analytical backends

    Chapters 7.3, 10.2 – Building ETL Pipelines + Strategic Integration:

    • Combining Excel, BIM, ERP

    • Automating flows between tools

    • Connecting scattered data sources

    Chapters 7.3, 7.4 – ETL Pipelines and Orchestration (Airflow, n8n):

    • Building pipelines

    • Scheduling jobs

    • Using tools like Airflow or n8n to control the flow 

    Chapters 2.1, 10.1 – Fragmentation, ROI, Survival Strategy:

    • Hidden costs of bad data

    • Risk of inaction

    • ROI of data initiatives

    • Convincing stakeholders

    Download the DDC Guidebook for Free

     

     

    🎯 DDC Workshop That Solves Your Puzzle

    Module 1 – Data Automation and Workflows in Construction:
    • Overview of data sources
    • Excel vs systems
    • Typical data flows in construction
    • Foundational data logic

    Module 3 – Automated Data Processing Workflow:
    • Setting up ETL workflows
    • CAD/BIM extraction
    • Automation in Excel/PDF reporting

    Module 8 – Converting Unstructured CAD into Structured Formats 
    • From IFC/Revit to tables
    • Geometric vs semantic data
    • Tools for parsing and transforming CAD models

    Module 13 – Key Stages of Transformation 
    • Transformation roadmap
    • Change management
    • Roles and responsibilities
    • KPIs and success metrics

    Module 8 – Integrating Diverse Data Systems and Formats
    • Excel, ERP, BIM integration
    • Data connection and file exchange
    • Structuring hybrid pipelines

    Module 7 – Automating Data Quality Assurance Processes 
    • Rules and checks
    • Dashboards
    • Report validation
    • Automated exception handling

    Module 10 – Challenges of Digitalization in the Industry 
    • How to justify investment in data
    • Stakeholder concerns
    • ROI examples
    • Failure risks

    💬 Individual Consultation – What We'll Discuss

    Audit of your data landscape 

    We'll review how data is stored and shared in your company and identify key improvement areas.

    Select a process for automation 

    We'll pick one process in your company that can be automated and outline a step-by-step plan.

    Strategic roadmap planning 

    Together we’ll map your digital transformation priorities and build a realistic roadmap.

    CAD (BIM) - IFC/Revit model review 

    We'll review your Revit/IFC/DWG data and show how to convert it into clean, structured datasets.

    Mapping integrations across tools 

    We’ll identify your main data sources and define how they could be connected into one workflow.

    Plan a pilot pipeline (PoC) 

    We'll plan a pilot pipeline: where to start, what tools to use, and what benefits to expect.

    ROI and stakeholder alignment 

    📬 Get Your Personalized Report and Next Steps

    You’ve just taken the first step toward clarity. But here’s the uncomfortable truth: 🚨 Most companies lose time and money every week because they don't know what their data is hiding. Missed deadlines, incorrect reports, disconnected teams — all symptoms of a silent data chaos that gets worse the longer it's ignored.

    Please enter your contact details so we can send you your customized recommendations and next-step options tailored to your goals.

    💡 What you’ll get next:

    • A tailored action plan based on your answers

    • A list of tools and strategies to fix what’s slowing you down

    • An invite to a free 1:1 session to discuss your case

    • And if you choose: a prototype (PoC) to show how your process could be automated — fast.

    Clean & Organized Data

    Theoretical Chapters:

    Practical Chapters:

    What You'll Find on
    DDC Solutions:

    • CAD/BIM to spreadsheet/database converters (Revit, AutoCAD, IFC, Microstation)
    • Ready-to-deploy n8n workflows for construction processes
    • ETL pipelines for data synchronization between systems
    • Customizable Python scripts for repetitive tasks
    • Intelligent data validation and error detection
    • Real-time dashboard connectors
    • Automated reporting systems

    Connect Everything

    Theoretical Chapters:

    Practical Chapters:

    What You'll Find on
    DDC Solutions:

    • CAD/BIM to spreadsheet/database converters (Revit, AutoCAD, IFC, Microstation)
    • Ready-to-deploy n8n workflows for construction processes
    • ETL pipelines for data synchronization between systems
    • Customizable Python scripts for repetitive tasks
    • Intelligent data validation and error detection
    • Real-time dashboard connectors
    • Automated reporting systems

    Add AI & LLM Brain

    Theoretical Chapters:

    Practical Chapters:

    What You'll Find on
    DDC Solutions:

    • CAD/BIM to spreadsheet/database converters (Revit, AutoCAD, IFC, Microstation)
    • Ready-to-deploy n8n workflows for construction processes
    • ETL pipelines for data synchronization between systems
    • Customizable Python scripts for repetitive tasks
    • Intelligent data validation and error detection
    • Real-time dashboard connectors
    • Automated reporting systems
    Construction ERP using calculations and estimates as an example
    This website uses cookies to improve your experience. By using this website you agree to our Data Protection Policy.
    Read more
    ×