Construction schedules
24 February 2024
ETL Load Automatically create PDF documents
26 February 2024

ETL Transform application of validation rules and transformation

In order to transform-verify collected data in the ETL process, we will use regular expressions to check the consistency and integrity of attributes based on predefined rules. We talked more about RegEx in the chapter "Translating requirements into structured form".

Regex is the key to efficient data validation, allowing to perform automated checks against complex criteria with just a few lines of code, greatly simplifying the data validation process.

In the "Transform" step in the construction data management, regular expressions (RegEx) may for example be used to check the conformity of formats of identifiers, such as the "ID" attribute.

For example, from our experience we establish that valid values for the "ID" attribute may include "W-NEW", "W-OLD1" or "D-122" or similar values where the first character is a letter, followed by a dash and then three alphabetic characters 'NEW', 'OLD' or any three digit number.

The following RegEx pattern can be used to perform this check: ^W-NEW$|^W-OLD[0-9]+$|^D-1[0-9]{2}$. This pattern allows to check if all identifiers in the dataset match the criteria set. If any value does not match this pattern, it will result in an error.

To create Python code to transform data and use the data requirements to create a result table, simply formulate a query to ChatGPT.

 

❏ Text request to ChatGPT:

Write code to validate DataFrame columns with regular expressions that validate identifiers in the format 'W-NEW' or 'W-OLD', energy efficiency with letters 'A' through 'G', warranty period and replacement cycle with numeric values in years ⏎

➤ ChatGPT Answer:

The above automatically derived Python code uses the re (RegEx regular expressions) library to define a function that validates each attribute of a data element in a pandas DataFrame. For each specified column (attribute), it applies a RegEx pattern to check if each record matches the expected format, and adds the results as new boolean (False/True attribute) columns to the DataFrame.

Having collected and transformed the data, the only thing left to do is to upload the results into the format we need, document or dashboard.

Leave a Reply

Change language

Post's Highlights

    Stay updated: news and insights



    We’re Here to Help

    Fresh solutions are released through our social channels

    UNLOCK THE POWER OF DATA
     IN CONSTRUCTION

    Dive into the world of data-driven construction with this accessible guide, perfect for professionals and novices alike.
    From the basics of data management to cutting-edge trends in digital transformation, this book
    will be your comprehensive guide to using data in the construction industry.

    Related posts 

    Focus Areas

    navigate
    • ALL THE CHAPTERS IN THIS PART
    • A PRACTICAL GUIDE TO IMPLEMENTING A DATA-DRIVEN APPROACH (8)
    • CLASSIFICATION AND INTEGRATION: A COMMON LANGUAGE FOR CONSTRUCTION DATA (8)
    • DATA FLOW WITHOUT MANUAL EFFORT: WHY ETL (8)
    • DATA INFRASTRUCTURE: FROM STORAGE FORMATS TO DIGITAL REPOSITORIES (8)
    • DATA UNIFICATION AND STRUCTURING (7)
    • SYSTEMATIZATION OF REQUIREMENTS AND VALIDATION OF INFORMATION (7)
    • COST CALCULATIONS AND ESTIMATES FOR CONSTRUCTION PROJECTS (6)
    • EMERGENCE OF BIM-CONCEPTS IN THE CONSTRUCTION INDUSTRY (6)
    • MACHINE LEARNING AND PREDICTIONS (6)
    • BIG DATA AND ITS ANALYSIS (5)
    • DATA ANALYTICS AND DATA-DRIVEN DECISION-MAKING (5)
    • DATA CONVERSION INTO A STRUCTURED FORM (5)
    • DESIGN PARAMETERIZATION AND USE OF LLM FOR CAD OPERATION (5)
    • GEOMETRY IN CONSTRUCTION: FROM LINES TO CUBIC METERS (5)
    • LLM AND THEIR ROLE IN DATA PROCESSING AND BUSINESS PROCESSES (5)
    • ORCHESTRATION OF ETL AND WORKFLOWS: PRACTICAL SOLUTIONS (5)
    • SURVIVAL STRATEGIES: BUILDING COMPETITIVE ADVANTAGE (5)
    • 4D-6D and Calculation of Carbon Dioxide Emissions (4)
    • CONSTRUCTION ERP AND PMIS SYSTEMS (4)
    • COST AND SCHEDULE FORECASTING USING MACHINE LEARNING (4)
    • DATA WAREHOUSE MANAGEMENT AND CHAOS PREVENTION (4)
    • EVOLUTION OF DATA USE IN THE CONSTRUCTION INDUSTRY (4)
    • IDE WITH LLM SUPPORT AND FUTURE PROGRAMMING CHANGES (4)
    • QUANTITY TAKE-OFF AND AUTOMATIC CREATION OF ESTIMATES AND SCHEDULES (4)
    • THE DIGITAL REVOLUTION AND THE EXPLOSION OF DATA (4)
    • Uncategorized (4)
    • CLOSED PROJECT FORMATS AND INTEROPERABILITY ISSUES (3)
    • MANAGEMENT SYSTEMS IN CONSTRUCTION (3)
    • AUTOMATIC ETL CONVEYOR (PIPELINE) (2)

    Search

    Search

    057 Speed of decision making depends on data quality

    Today’s design data architecture is undergoing fundamental changes. The industry is moving away from bulky, isolated models and closed formats towards more flexible, machine-readable structures focused on analytics, integration and process automation. However, the transition...

    060 A common language of construction the role of classifiers in digital transformation

    In the context of digitalization and automation of inspection and processing processes, a special role is played by classification systems elements – a kind of “digital dictionaries” that ensure uniformity in the description and parameterization...

    061 Masterformat, OmniClass, Uniclass and CoClass the evolution of classification systems

    Historically, construction element and work classifiers have evolved in three generations, each reflecting the level of available technology and the current needs of the industry in a particular time period (Fig. 4.2-8): First generation (early...

    Don't miss the new solutions

     

     

    Linux

    macOS

    Looking for the Linux or MAC version? Send us a quick message using the button below, and we’ll guide you through the process!


    📥 Download OnePager

    Welcome to DataDrivenConstruction—where data meets innovation in the construction industry. Our One-Pager offers a concise overview of how our data-driven solutions can transform your projects, enhance efficiency, and drive sustainable growth. 

    🚀 Welcome to the future of data in construction!

    You're taking your first step into the world of open data, working with normalized, structured data—the foundation of data analytics and modern automation tools.

    By downloading, you agree to the DataDrivenConstruction terms of use 

    Stay ahead with the latest updates on converters, tools, AI, LLM
    and data analytics in construction — Subscribe now!

    🚀 Welcome to the future of data in construction!

    You're taking your first step into the world of open data, working with normalized, structured data—the foundation of data analytics and modern automation tools.

    By downloading, you agree to the DataDrivenConstruction terms of use 

    Stay ahead with the latest updates on converters, tools, AI, LLM
    and data analytics in construction — Subscribe now!

    🚀 Welcome to the future of data in construction!

    You're taking your first step into the world of open data, working with normalized, structured data—the foundation of data analytics and modern automation tools.

    By downloading, you agree to the DataDrivenConstruction terms of use 

    Stay ahead with the latest updates on converters, tools, AI, LLM
    and data analytics in construction — Subscribe now!

    🚀 Welcome to the future of data in construction!

    You're taking your first step into the world of open data, working with normalized, structured data—the foundation of data analytics and modern automation tools.

    By downloading, you agree to the DataDrivenConstruction terms of use 

    Stay ahead with the latest updates on converters, tools, AI, LLM
    and data analytics in construction — Subscribe now!

    🚀 Welcome to the future of data in construction!

    You're taking your first step into the world of open data, working with normalized, structured data—the foundation of data analytics and modern automation tools.

    By downloading, you agree to the DDC terms of use 

    🚀 Welcome to the future of data in construction!

    You're taking your first step into the world of open data, working with normalized, structured data—the foundation of data analytics and modern automation tools.

    By downloading, you agree to the DataDrivenConstruction terms of use 

    Stay ahead with the latest updates on converters, tools, AI, LLM
    and data analytics in construction — Subscribe now!

    DataDrivenConstruction offers workshops tested and practiced on global leaders in the construction industry to help your team navigate and leverage the power of data and artificial intelligence in your company's decision making.

    Reserve your spot now to rethink your
    approach to decision making!

    Please enable JavaScript in your browser to complete this form.

     

    🚀 Welcome to the future of data in construction!

    By downloading, you agree to the DataDrivenConstruction terms of use 

    Stay ahead with the latest updates on converters, tools, AI, LLM
    and data analytics in construction — Subscribe now!

    Have a question or need more information? Reach out to us directly!
    Schedule a time to discuss your needs with our team.
    Tailored sessions to help your team grow — let's plan together!
    Have you attended one of our workshops, read our book, or used our solutions? Share your thoughts with us!
    Please enable JavaScript in your browser to complete this form.
    Name
    Data Maturity Diagnostics

    🧰 Data-Driven Readiness Check

    This short assessment will help you identify your company's data management pain points and offer solutions to improve project efficiency. It takes only 1–2 minutes to complete and you will receive personalized recommendations tailored to your needs.

    🚀 Goals and Pain Points

    What are your biggest obstacles today — and your goals for the next 6 months? We’ll use your answers to build a personalized roadmap.

    Build your automation pipeline

     Understand and organize your data

    Automate your key process

    Define a digital strategy

    Move from CAD (BIM) to databases and analytics

    Combine BIM, ERP and Excel

    Convince leadership to invest in data

    📘  What to Read in Data-Driven Construction Guidebook

    Chapters 1.2, 4.1–4.3 – Technologies, Data Conversion, Structuring, Modeling:

    • Centralized vs fragmented data

    • Principles of data structure

    • Roles of Excel, DWH, and databases

    Chapters 5.2, 7.2 – QTO Automation, ETL with Python:

    • Data filtering and grouping

    • Automating QTO and quantity takeoff

    • Python scripts and ETL logic

    Chapter 10.2 – Roadmap for Digital Transformation:

    • Strategic stages of digital change

    • Organizational setup

    • Prioritization and execution paths

    Chapters 4.1, 8.1–8.2 – From CAD (BIM) to Storage & Analytics:

    • Translating Revit/IFC to structured tables

    • BIM as a database

    • Building analytical backends

    Chapters 7.3, 10.2 – Building ETL Pipelines + Strategic Integration:

    • Combining Excel, BIM, ERP

    • Automating flows between tools

    • Connecting scattered data sources

    Chapters 7.3, 7.4 – ETL Pipelines and Orchestration (Airflow, n8n):

    • Building pipelines

    • Scheduling jobs

    • Using tools like Airflow or n8n to control the flow 

    Chapters 2.1, 10.1 – Fragmentation, ROI, Survival Strategy:

    • Hidden costs of bad data

    • Risk of inaction

    • ROI of data initiatives

    • Convincing stakeholders

    Download the DDC Guidebook for Free

     

     

    🎯 DDC Workshop That Solves Your Puzzle

    Module 1 – Data Automation and Workflows in Construction:
    • Overview of data sources
    • Excel vs systems
    • Typical data flows in construction
    • Foundational data logic

    Module 3 – Automated Data Processing Workflow:
    • Setting up ETL workflows
    • CAD/BIM extraction
    • Automation in Excel/PDF reporting

    Module 8 – Converting Unstructured CAD into Structured Formats 
    • From IFC/Revit to tables
    • Geometric vs semantic data
    • Tools for parsing and transforming CAD models

    Module 13 – Key Stages of Transformation 
    • Transformation roadmap
    • Change management
    • Roles and responsibilities
    • KPIs and success metrics

    Module 8 – Integrating Diverse Data Systems and Formats
    • Excel, ERP, BIM integration
    • Data connection and file exchange
    • Structuring hybrid pipelines

    Module 7 – Automating Data Quality Assurance Processes 
    • Rules and checks
    • Dashboards
    • Report validation
    • Automated exception handling

    Module 10 – Challenges of Digitalization in the Industry 
    • How to justify investment in data
    • Stakeholder concerns
    • ROI examples
    • Failure risks

    💬 Individual Consultation – What We'll Discuss

    Audit of your data landscape 

    We'll review how data is stored and shared in your company and identify key improvement areas.

    Select a process for automation 

    We'll pick one process in your company that can be automated and outline a step-by-step plan.

    Strategic roadmap planning 

    Together we’ll map your digital transformation priorities and build a realistic roadmap.

    CAD (BIM) - IFC/Revit model review 

    We'll review your Revit/IFC/DWG data and show how to convert it into clean, structured datasets.

    Mapping integrations across tools 

    We’ll identify your main data sources and define how they could be connected into one workflow.

    Plan a pilot pipeline (PoC) 

    We'll plan a pilot pipeline: where to start, what tools to use, and what benefits to expect.

    ROI and stakeholder alignment 

    📬 Get Your Personalized Report and Next Steps

    You’ve just taken the first step toward clarity. But here’s the uncomfortable truth: 🚨 Most companies lose time and money every week because they don't know what their data is hiding. Missed deadlines, incorrect reports, disconnected teams — all symptoms of a silent data chaos that gets worse the longer it's ignored.

    Please enter your contact details so we can send you your customized recommendations and next-step options tailored to your goals.

    💡 What you’ll get next:

    • A tailored action plan based on your answers

    • A list of tools and strategies to fix what’s slowing you down

    • An invite to a free 1:1 session to discuss your case

    • And if you choose: a prototype (PoC) to show how your process could be automated — fast.

    Clean & Organized Data

    Theoretical Chapters:

    Practical Chapters:

    What You'll Find on
    DDC Solutions:

    • CAD/BIM to spreadsheet/database converters (Revit, AutoCAD, IFC, Microstation)
    • Ready-to-deploy n8n workflows for construction processes
    • ETL pipelines for data synchronization between systems
    • Customizable Python scripts for repetitive tasks
    • Intelligent data validation and error detection
    • Real-time dashboard connectors
    • Automated reporting systems

    Connect Everything

    Theoretical Chapters:

    Practical Chapters:

    What You'll Find on
    DDC Solutions:

    • CAD/BIM to spreadsheet/database converters (Revit, AutoCAD, IFC, Microstation)
    • Ready-to-deploy n8n workflows for construction processes
    • ETL pipelines for data synchronization between systems
    • Customizable Python scripts for repetitive tasks
    • Intelligent data validation and error detection
    • Real-time dashboard connectors
    • Automated reporting systems

    Add AI & LLM Brain

    Theoretical Chapters:

    Practical Chapters:

    What You'll Find on
    DDC Solutions:

    • CAD/BIM to spreadsheet/database converters (Revit, AutoCAD, IFC, Microstation)
    • Ready-to-deploy n8n workflows for construction processes
    • ETL pipelines for data synchronization between systems
    • Customizable Python scripts for repetitive tasks
    • Intelligent data validation and error detection
    • Real-time dashboard connectors
    • Automated reporting systems
    ETL Transform application of validation rules and transformation
    This website uses cookies to improve your experience. By using this website you agree to our Data Protection Policy.
    Read more
    ×